Automated Processing and Phenotype Extraction of Ovine Medical Images Using a Combined Generative Adversarial Network and Computer Vision Pipeline
The speed and accuracy of phenotype detection from medical images are some of the most important qualities needed for any informed and timely response such as early detection of cancer or detection of desirable phenotypes for animal breeding. To improve both these qualities, the world is leveraging...
Enregistré dans:
Auteurs principaux: | James Francis Robson, Scott John Denholm, Mike Coffey |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a9ab647599b74df5b2b93ba334020e43 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Low-Light Image Enhancement Based on Generative Adversarial Network
par: Nandhini Abirami R., et autres
Publié: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
par: Chuan Du, et autres
Publié: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
par: Mingyun Wen, et autres
Publié: (2021) -
A Novel Technique for Image Steganalysis Based on Separable Convolution and Adversarial Mechanism
par: Yuwei Ge, et autres
Publié: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
par: Yanlong Gao, et autres
Publié: (2021)