The MHD Newtonian hybrid nanofluid flow and mass transfer analysis due to super-linear stretching sheet embedded in porous medium

Abstract The steady magnetohydrodynamics (MHD) incompressible hybrid nanofluid flow and mass transfer due to porous stretching surface with quadratic velocity is investigated in the presence of mass transpiration and chemical reaction. The basic laminar boundary layer equations for momentum and mass...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: U. S. Mahabaleshwar, T. Anusha, M. Hatami
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a9af3bdabab3484b92db8b1d7b0104bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The steady magnetohydrodynamics (MHD) incompressible hybrid nanofluid flow and mass transfer due to porous stretching surface with quadratic velocity is investigated in the presence of mass transpiration and chemical reaction. The basic laminar boundary layer equations for momentum and mass transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The mass equation in the presence of chemical reaction is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation. The mass transfer is analyzed for two different boundary conditions of concentration field that are prescribed surface concentration (PSC) and prescribed mass flux (PMF). The asymptotic solution of concentration filed for large Schmidt number is analyzed using Wentzel-Kramer-Brillouin (WKB) method. The parameters influence the flow are suction/injection, superlinear stretching parameter, porosity, magnetic parameter, hybrid nanofluid terms, Brinkman ratio and the effect of these are analysed using graphs.