Scalable and accurate deep learning with electronic health records
Artificial intelligence: Algorithm predicts clinical outcomes for hospital inpatients Artificial intelligence outperforms traditional statistical models at predicting a range of clinical outcomes from a patient’s entire raw electronic health record (EHR). A team led by Alvin Rajkomar and Eyal Oren f...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9b3a7cdda6e486cba268a16dc6760b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Artificial intelligence: Algorithm predicts clinical outcomes for hospital inpatients Artificial intelligence outperforms traditional statistical models at predicting a range of clinical outcomes from a patient’s entire raw electronic health record (EHR). A team led by Alvin Rajkomar and Eyal Oren from Google in Mountain View, California, USA, developed a data processing pipeline for transforming EHR files into a standardized format. They then applied deep learning models to data from 216,221 adult patients hospitalized for at least 24 h each at two academic medical centers, and showed that their algorithm could accurately predict risk of mortality, hospital readmission, prolonged hospital stay and discharge diagnosis. In all cases, the method proved more accurate than previously published models. The authors provide a case study to serve as a proof-of-concept of how such an algorithm could be used in routine clinical practice in the future. |
---|