Scalable and accurate deep learning with electronic health records
Artificial intelligence: Algorithm predicts clinical outcomes for hospital inpatients Artificial intelligence outperforms traditional statistical models at predicting a range of clinical outcomes from a patient’s entire raw electronic health record (EHR). A team led by Alvin Rajkomar and Eyal Oren f...
Guardado en:
Autores principales: | Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt, Peter J. Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flores, Gavin E. Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael D. Howell, Claire Cui, Greg S. Corrado, Jeffrey Dean |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9b3a7cdda6e486cba268a16dc6760b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A quick guide for developing effective bioinformatics programming skills.
por: Joel T Dudley, et al.
Publicado: (2009) -
Declaración /
por: Hardt, Michael
Publicado: (2012) -
Characteristics and challenges of the clinical pipeline of digital therapeutics
por: Nisarg A. Patel, et al.
Publicado: (2020) -
Asamblea /
por: Hardt, Michael, 1960-
Publicado: (2019) -
Ten years of pathway analysis: current approaches and outstanding challenges.
por: Purvesh Khatri, et al.
Publicado: (2012)