Kobayashi—Hitchin correspondence for twisted vector bundles
We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
De Gruyter
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a797 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein. |
|---|