Kobayashi—Hitchin correspondence for twisted vector bundles

We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perego Arvid
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a797
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a9b61cfbe7854a5f91c9f3fecd75a797
record_format dspace
spelling oai:doaj.org-article:a9b61cfbe7854a5f91c9f3fecd75a7972021-12-05T14:10:45ZKobayashi—Hitchin correspondence for twisted vector bundles2300-744310.1515/coma-2020-0107https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a7972021-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0107https://doaj.org/toc/2300-7443We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.Perego ArvidDe Gruyterarticletwisted vector bundlessemistabilityhermite-einsten metrics32l0553c0714j6053d1853c2853c1515a6632l25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 1-95 (2021)
institution DOAJ
collection DOAJ
language EN
topic twisted vector bundles
semistability
hermite-einsten metrics
32l05
53c07
14j60
53d18
53c28
53c15
15a66
32l25
Mathematics
QA1-939
spellingShingle twisted vector bundles
semistability
hermite-einsten metrics
32l05
53c07
14j60
53d18
53c28
53c15
15a66
32l25
Mathematics
QA1-939
Perego Arvid
Kobayashi—Hitchin correspondence for twisted vector bundles
description We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.
format article
author Perego Arvid
author_facet Perego Arvid
author_sort Perego Arvid
title Kobayashi—Hitchin correspondence for twisted vector bundles
title_short Kobayashi—Hitchin correspondence for twisted vector bundles
title_full Kobayashi—Hitchin correspondence for twisted vector bundles
title_fullStr Kobayashi—Hitchin correspondence for twisted vector bundles
title_full_unstemmed Kobayashi—Hitchin correspondence for twisted vector bundles
title_sort kobayashi—hitchin correspondence for twisted vector bundles
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a797
work_keys_str_mv AT peregoarvid kobayashihitchincorrespondencefortwistedvectorbundles
_version_ 1718371768773640192