Kobayashi—Hitchin correspondence for twisted vector bundles
We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a797 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a9b61cfbe7854a5f91c9f3fecd75a797 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a9b61cfbe7854a5f91c9f3fecd75a7972021-12-05T14:10:45ZKobayashi—Hitchin correspondence for twisted vector bundles2300-744310.1515/coma-2020-0107https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a7972021-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0107https://doaj.org/toc/2300-7443We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.Perego ArvidDe Gruyterarticletwisted vector bundlessemistabilityhermite-einsten metrics32l0553c0714j6053d1853c2853c1515a6632l25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 1-95 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
twisted vector bundles semistability hermite-einsten metrics 32l05 53c07 14j60 53d18 53c28 53c15 15a66 32l25 Mathematics QA1-939 |
spellingShingle |
twisted vector bundles semistability hermite-einsten metrics 32l05 53c07 14j60 53d18 53c28 53c15 15a66 32l25 Mathematics QA1-939 Perego Arvid Kobayashi—Hitchin correspondence for twisted vector bundles |
description |
We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein. |
format |
article |
author |
Perego Arvid |
author_facet |
Perego Arvid |
author_sort |
Perego Arvid |
title |
Kobayashi—Hitchin correspondence for twisted vector bundles |
title_short |
Kobayashi—Hitchin correspondence for twisted vector bundles |
title_full |
Kobayashi—Hitchin correspondence for twisted vector bundles |
title_fullStr |
Kobayashi—Hitchin correspondence for twisted vector bundles |
title_full_unstemmed |
Kobayashi—Hitchin correspondence for twisted vector bundles |
title_sort |
kobayashi—hitchin correspondence for twisted vector bundles |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/a9b61cfbe7854a5f91c9f3fecd75a797 |
work_keys_str_mv |
AT peregoarvid kobayashihitchincorrespondencefortwistedvectorbundles |
_version_ |
1718371768773640192 |