Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes
Naim Kittana, 1 Mohyeddin Assali, 2 Wolfram-Hubertus Zimmermann, 3, 4 Norman Liaw, 3, 4 Gabriela Leao Santos, 3, 4 Abdul Rehman, 3, 4 Susanne Lutz 3, 4 1Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine; 2Department of...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9c7e6ee0cec46b6bd6391ff93494454 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Naim Kittana, 1 Mohyeddin Assali, 2 Wolfram-Hubertus Zimmermann, 3, 4 Norman Liaw, 3, 4 Gabriela Leao Santos, 3, 4 Abdul Rehman, 3, 4 Susanne Lutz 3, 4 1Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine; 2Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine; 3Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; 4DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, GermanyCorrespondence: Naim KittanaDepartment of Biomedical Sciences, Faculty of Medicine and Health Sciences, An Najah National University, Akademia Street, Nablus, PalestineTel +970 (9) 2345113Fax +970 (9) 2345982Email naim.kittana@najah.eduBackground: Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands.Materials and Methods: ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain.Results: Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young’s modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition.Conclusion: Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair.Keywords: engineered connective tissue, multiwall carbon nanotubes, chitosan, mechanical properties, collagen-based tissue scaffold |
---|