Zero-Shot Pipeline Detection for Sub-Bottom Profiler Data Based on Imaging Principles
With the increasing number of underwater pipeline investigation activities, the research on automatic pipeline detection is of great significance. At this stage, object detection algorithms based on Deep Learning (DL) are widely used due to their abilities to deal with various complex scenarios. How...
Guardado en:
Autores principales: | Gen Zheng, Jianhu Zhao, Shaobo Li, Jie Feng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9e6144e15a04f389958b3deb25ad5ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Foreign Experience of Applying the Principle of "Pump or Pay" in the Field of Pipeline Transportation
por: V. I. Salygin, et al.
Publicado: (2015) -
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
por: Ali Shojaeipour, et al.
Publicado: (2021) -
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
Measurement of shot velocity using particle image velocimetry and numerical analysis of residual stress at two shot peening conditions
por: Takahiro OHTA, et al.
Publicado: (2020) -
A Multidisciplinary Approach for the Mapping, Automatic Detection and Morphometric Analysis of Ancient Submerged Coastal Installations: The Case Study of the Ancient Aegina Harbour Complex
por: Nikos Georgiou, et al.
Publicado: (2021)