Zero-Shot Pipeline Detection for Sub-Bottom Profiler Data Based on Imaging Principles
With the increasing number of underwater pipeline investigation activities, the research on automatic pipeline detection is of great significance. At this stage, object detection algorithms based on Deep Learning (DL) are widely used due to their abilities to deal with various complex scenarios. How...
Enregistré dans:
Auteurs principaux: | Gen Zheng, Jianhu Zhao, Shaobo Li, Jie Feng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a9e6144e15a04f389958b3deb25ad5ce |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Foreign Experience of Applying the Principle of "Pump or Pay" in the Field of Pipeline Transportation
par: V. I. Salygin, et autres
Publié: (2015) -
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
par: Ali Shojaeipour, et autres
Publié: (2021) -
Few-Shot Object Detection via Sample Processing
par: Honghui Xu, et autres
Publié: (2021) -
Measurement of shot velocity using particle image velocimetry and numerical analysis of residual stress at two shot peening conditions
par: Takahiro OHTA, et autres
Publié: (2020) -
A Multidisciplinary Approach for the Mapping, Automatic Detection and Morphometric Analysis of Ancient Submerged Coastal Installations: The Case Study of the Ancient Aegina Harbour Complex
par: Nikos Georgiou, et autres
Publié: (2021)