Human-Centered Explainable Artificial Intelligence for Marine Autonomous Surface Vehicles
Explainable Artificial Intelligence (XAI) for Autonomous Surface Vehicles (ASVs) addresses developers’ needs for model interpretation, understandability, and trust. As ASVs approach wide-scale deployment, these needs are expanded to include end user interactions in real-world contexts. Despite recen...
Enregistré dans:
Auteurs principaux: | Erik Veitch, Ole Andreas Alsos |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a9ee8d00e35445d38f1f3ed8dc176a57 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Explaining a Deep Reinforcement Learning Docking Agent Using Linear Model Trees with User Adapted Visualization
par: Vilde B. Gjærum, et autres
Publié: (2021) -
Motion Control of Autonomous Underwater Vehicle Based on Fractional Calculus Active Disturbance Rejection
par: Junhe Wan, et autres
Publié: (2021) -
A Coordination System between Decision Making and Controlling for Autonomous Collision Avoidance of Large Intelligent Ships
par: Zhengyu Zhou, et autres
Publié: (2021) -
Revealing the Impact of Global Heating on North Atlantic Circulation Using Transparent Machine Learning
par: Maike Sonnewald, et autres
Publié: (2021) -
Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities
par: Marco Cococcioni, et autres
Publié: (2021)