Using Educational Data Mining to Identify and Analyze Student Learning Strategies in an Online Flipped Classroom
Analyzing the learning analytics from a course provides insights that can impact instructional design decisions. This study used educational data mining techniques, specifically a longitudinal k-means cluster analysis, to identify the strategies students used when completing the online portion of an...
Enregistré dans:
Auteurs principaux: | Randall Davies, Gove Allen, Conan Albrecht, Nesrin Bakir, Nick Ball |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a9f1ccc071894af79e9436e5dbf7a8a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Studying Learner’s Perception of Attaining Graduate Attributes in Capstone Project Units Using Online Flipped Classroom
par: Tayab D. Memon, et autres
Publié: (2021) -
Analysing Structured Learning Behaviour in Massive Open Online Courses (MOOCs): An Approach Based on Process Mining and Clustering
par: Antoine van den Beemt, et autres
Publié: (2018) -
Towards an integration of text and graph clustering methods as a lens for studying social interaction in MOOCs
par: Diyi Yang, et autres
Publié: (2014) -
Applying Learning Analytics to Explore the Effects of Motivation on Online Students' Reading Behavioral Patterns
par: Jerry Chih-Yuan Sun, et autres
Publié: (2018) -
Studying Learner Behavior in Online Courses With Free-Certificate Coupons: Results From Two Case Studies
par: Joshua Littenberg-Tobias, et autres
Publié: (2020)