A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides

Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yifan Nie, Chaoping Liang, Pil-Ryung Cha, Luigi Colombo, Robert M. Wallace, Kyeongjae Cho
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aa0c56d8c2de41479d2ae3f38b125f38
record_format dspace
spelling oai:doaj.org-article:aa0c56d8c2de41479d2ae3f38b125f382021-12-02T16:06:36ZA kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides10.1038/s41598-017-02919-22045-2322https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f382017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02919-2https://doaj.org/toc/2045-2322Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.Yifan NieChaoping LiangPil-Ryung ChaLuigi ColomboRobert M. WallaceKyeongjae ChoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yifan Nie
Chaoping Liang
Pil-Ryung Cha
Luigi Colombo
Robert M. Wallace
Kyeongjae Cho
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
description Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.
format article
author Yifan Nie
Chaoping Liang
Pil-Ryung Cha
Luigi Colombo
Robert M. Wallace
Kyeongjae Cho
author_facet Yifan Nie
Chaoping Liang
Pil-Ryung Cha
Luigi Colombo
Robert M. Wallace
Kyeongjae Cho
author_sort Yifan Nie
title A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
title_short A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
title_full A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
title_fullStr A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
title_full_unstemmed A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
title_sort kinetic monte carlo simulation method of van der waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f38
work_keys_str_mv AT yifannie akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT chaopingliang akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT pilryungcha akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT luigicolombo akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT robertmwallace akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT kyeongjaecho akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT yifannie kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT chaopingliang kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT pilryungcha kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT luigicolombo kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT robertmwallace kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
AT kyeongjaecho kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides
_version_ 1718384981939585024