A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides
Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales,...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:aa0c56d8c2de41479d2ae3f38b125f38 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:aa0c56d8c2de41479d2ae3f38b125f382021-12-02T16:06:36ZA kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides10.1038/s41598-017-02919-22045-2322https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f382017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02919-2https://doaj.org/toc/2045-2322Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.Yifan NieChaoping LiangPil-Ryung ChaLuigi ColomboRobert M. WallaceKyeongjae ChoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yifan Nie Chaoping Liang Pil-Ryung Cha Luigi Colombo Robert M. Wallace Kyeongjae Cho A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
description |
Abstract Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study. |
format |
article |
author |
Yifan Nie Chaoping Liang Pil-Ryung Cha Luigi Colombo Robert M. Wallace Kyeongjae Cho |
author_facet |
Yifan Nie Chaoping Liang Pil-Ryung Cha Luigi Colombo Robert M. Wallace Kyeongjae Cho |
author_sort |
Yifan Nie |
title |
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
title_short |
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
title_full |
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
title_fullStr |
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
title_full_unstemmed |
A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
title_sort |
kinetic monte carlo simulation method of van der waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/aa0c56d8c2de41479d2ae3f38b125f38 |
work_keys_str_mv |
AT yifannie akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT chaopingliang akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT pilryungcha akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT luigicolombo akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT robertmwallace akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT kyeongjaecho akineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT yifannie kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT chaopingliang kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT pilryungcha kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT luigicolombo kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT robertmwallace kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides AT kyeongjaecho kineticmontecarlosimulationmethodofvanderwaalsepitaxyforatomisticnucleationgrowthprocessesoftransitionmetaldichalcogenides |
_version_ |
1718384981939585024 |