High-dimensional genomic data bias correction and data integration using MANCIE
Analyses of data from high-throughput genomic technologies are challenging given large data dimensionality. Here, Liu and colleagues describe a method called MANCIE (Matrix Analysis and Normalization by Concordant Information Enhancement) that can conduct genomic data normalization and bias correcti...
Guardado en:
Autores principales: | Chongzhi Zang, Tao Wang, Ke Deng, Bo Li, Sheng’en Hu, Qian Qin, Tengfei Xiao, Shihua Zhang, Clifford A. Meyer, Housheng Hansen He, Myles Brown, Jun S. Liu, Yang Xie, X. Shirley Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa14d67d31a54ea9b4ff50393da16654 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Taxonomic bias in biodiversity data and societal preferences
por: Julien Troudet, et al.
Publicado: (2017) -
Quantifying molecular bias in DNA data storage
por: Yuan-Jyue Chen, et al.
Publicado: (2020) -
Exploiting collider bias to apply two-sample summary data Mendelian randomization methods to one-sample individual level data.
por: Ciarrah Barry, et al.
Publicado: (2021) -
Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data.
por: Kakajan Komurov, et al.
Publicado: (2010) -
High-dimensional hepatopath data analysis by machine learning for predicting HBV-related fibrosis
por: Xiangke Pu, et al.
Publicado: (2021)