Instance Reduction for Avoiding Overfitting in Decision Trees
Decision trees learning is one of the most practical classification methods in machine learning, which is used for approximating discrete-valued target functions. However, they may overfit the training data, which limits their ability to generalize to unseen instances. In this study, we investigated...
Enregistré dans:
Auteurs principaux: | Amro Asma’, Al-Akhras Mousa, Hindi Khalil El, Habib Mohamed, Shawar Bayan Abu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/aa1e6c3d003a415daaa4344d6c9fe55f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau
par: Hui Yu, et autres
Publié: (2021) -
Pruning Filters Base on Extending Filter Group Lasso
par: Zhihong Xie, et autres
Publié: (2020) -
Enhancing unsupervised medical entity linking with multi-instance learning
par: Cheng Yan, et autres
Publié: (2021) -
General deep learning model for detecting diabetic retinopathy
par: Ping-Nan Chen, et autres
Publié: (2021) -
A Novel Hybrid Approach: Instance Weighted Hidden Naive Bayes
par: Liangjun Yu, et autres
Publié: (2021)