CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Application
CRISPR-based enzymes have offered a unique capability to the design of genetic switches, with advantages in designability, modularity and orthogonality. CRISPR-based genetic switches operate on multiple levels of life, including transcription and translation. In both prokaryotic and eukaryotic cells...
Enregistré dans:
Auteurs principaux: | , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/aa22db21823b49df9016c2c992666094 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | CRISPR-based enzymes have offered a unique capability to the design of genetic switches, with advantages in designability, modularity and orthogonality. CRISPR-based genetic switches operate on multiple levels of life, including transcription and translation. In both prokaryotic and eukaryotic cells, deactivated CRISPR endonuclease and endoribonuclease have served in genetic switches for activating or repressing gene expression, at both transcriptional and translational levels. With these genetic switches, more complex circuits have been assembled to achieve sophisticated functions including inducible switches, non-linear response and logical biocomputation. As more CRISPR enzymes continue to be excavated, CRISPR-based genetic switches will be used in a much wider range of applications. |
---|