A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification
Abstract Motor Imagery is a classical method of Brain Computer Interaction, in which electroencephalogram (EEG) signal features evoked by the imaginary body movements are recognized, and relevant information is extracted. Recently, various deep learning methods are being focused on finding an easy-t...
Guardado en:
Autores principales: | Tianjun Liu, Deling Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa3f36c8890e494db50668f1e1a678fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network
por: Qingshuang Mu, et al.
Publicado: (2021) -
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
por: Amira Echtioui, et al.
Publicado: (2021) -
Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion
por: Jacob Tryon, et al.
Publicado: (2021) -
Graphite Classification Based on Improved Convolution Neural Network
por: Guangjun Liu, et al.
Publicado: (2021) -
Filter Bank Convolutional Neural Network for SSVEP Classification
por: Dechun Zhao, et al.
Publicado: (2021)