Setting an optimal α that minimizes errors in null hypothesis significance tests.
Null hypothesis significance testing has been under attack in recent years, partly owing to the arbitrary nature of setting α (the decision-making threshold and probability of Type I error) at a constant value, usually 0.05. If the goal of null hypothesis testing is to present conclusions in which w...
Guardado en:
Autores principales: | Joseph F Mudge, Leanne F Baker, Christopher B Edge, Jeff E Houlahan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa4cfdbd11174377bacc2dd7e5c8c8fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Why we habitually engage in null-hypothesis significance testing: A qualitative study.
por: Jonah Stunt, et al.
Publicado: (2021) -
Data analysis in forest sciences: why do we continue using null hypothesis significance tests?
por: Estay,Sergio A, et al.
Publicado: (2011) -
Journal of articles in support of the null hypothesis
Publicado: (2002) -
A test of Wagner’s hypothesis for the Ghanaian economy
por: John Gartchie Gatsi, et al.
Publicado: (2019) -
Providing Evidence for the Null Hypothesis in Functional Magnetic Resonance Imaging Using Group-Level Bayesian Inference
por: Ruslan Masharipov, et al.
Publicado: (2021)