Synaptic plasticity in neural networks needs homeostasis with a fast rate detector.
Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks. To keep activity at healthy, low levels, plasticity must...
Guardado en:
Autores principales: | Friedemann Zenke, Guillaume Hennequin, Wulfram Gerstner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa4df9d0c81d4af8845bc30081660ec9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.
por: Richard Naud, et al.
Publicado: (2012) -
Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
por: Nicolas Frémaux, et al.
Publicado: (2013) -
Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks
por: Jannik Luboeinski, et al.
Publicado: (2021) -
Synaptic metaplasticity in binarized neural networks
por: Axel Laborieux, et al.
Publicado: (2021) -
A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.
por: Suraj Honnuraiah, et al.
Publicado: (2013)