Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells.
Resveratrol, a naturally occurring phytoalexin, has reported cardioprotective, anti-inflammatory, chemopreventative and antidiabetic properties. Several studies indicate the multiple effects of resveratrol on cellular function are due to its inhibition of class 1A phosphoinositide 3-kinase (PI3K) me...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa5b842b25724128a8ddd3c7ded65dd4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:aa5b842b25724128a8ddd3c7ded65dd4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:aa5b842b25724128a8ddd3c7ded65dd42021-11-18T08:49:37ZResveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells.1932-620310.1371/journal.pone.0078019https://doaj.org/article/aa5b842b25724128a8ddd3c7ded65dd42013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24205069/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Resveratrol, a naturally occurring phytoalexin, has reported cardioprotective, anti-inflammatory, chemopreventative and antidiabetic properties. Several studies indicate the multiple effects of resveratrol on cellular function are due to its inhibition of class 1A phosphoinositide 3-kinase (PI3K) mediated signaling pathways, but it also activates AMP-activated protein kinase (AMPK). As sodium transport in the kidney via the Epithelial Sodium Channel (ENaC) is highly sensitive to changes in phosphoinositide signaling in the membrane and AMPK, we employed resveratrol to probe the relative effects of phosphatidylinositol species in the plasma membrane and AMPK activity and their impact on ENaC activity in mouse cortical collecting duct (mpkCCDc14) cells. Here we demonstrate that resveratrol acutely reduces amiloride-sensitive current in mpkCCDc14 cells. The time course and dose dependency of this inhibition paralleled depletion of the PI(3,4,5)P3 reporter (AKT-PH) in live-cell microscopy, indicating the early inhibition is likely mediated by resveratrol's known effects on PI3K activity. Additionally, resveratrol induces a late inhibitory effect (4-24 hours) that appears to be mediated via AMPK activation. Resveratrol treatment induces significant AMPK activation compared with vehicle controls after 4 h, which persists through 16 h. Knockdown of AMPK or treatment with the AMPK inhibitor Compound C reduced the late phase of current reduction but had no effect on the early inhibitory activity of resveratrol. Collectively, these data demonstrate that resveratrol inhibits ENaC activity by a dual effect: an early reduction in activity seen within 5 minutes related to depletion of membrane PIP3, and a sustained late (4-24 h) effect secondary to activation of AMPK.Kelly M WeixelAllison MarciszynRodrigo AlzamoraHui LiOliver FischerRobert S EdingerKenneth R HallowsJohn P JohnsonPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 10, p e78019 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kelly M Weixel Allison Marciszyn Rodrigo Alzamora Hui Li Oliver Fischer Robert S Edinger Kenneth R Hallows John P Johnson Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
description |
Resveratrol, a naturally occurring phytoalexin, has reported cardioprotective, anti-inflammatory, chemopreventative and antidiabetic properties. Several studies indicate the multiple effects of resveratrol on cellular function are due to its inhibition of class 1A phosphoinositide 3-kinase (PI3K) mediated signaling pathways, but it also activates AMP-activated protein kinase (AMPK). As sodium transport in the kidney via the Epithelial Sodium Channel (ENaC) is highly sensitive to changes in phosphoinositide signaling in the membrane and AMPK, we employed resveratrol to probe the relative effects of phosphatidylinositol species in the plasma membrane and AMPK activity and their impact on ENaC activity in mouse cortical collecting duct (mpkCCDc14) cells. Here we demonstrate that resveratrol acutely reduces amiloride-sensitive current in mpkCCDc14 cells. The time course and dose dependency of this inhibition paralleled depletion of the PI(3,4,5)P3 reporter (AKT-PH) in live-cell microscopy, indicating the early inhibition is likely mediated by resveratrol's known effects on PI3K activity. Additionally, resveratrol induces a late inhibitory effect (4-24 hours) that appears to be mediated via AMPK activation. Resveratrol treatment induces significant AMPK activation compared with vehicle controls after 4 h, which persists through 16 h. Knockdown of AMPK or treatment with the AMPK inhibitor Compound C reduced the late phase of current reduction but had no effect on the early inhibitory activity of resveratrol. Collectively, these data demonstrate that resveratrol inhibits ENaC activity by a dual effect: an early reduction in activity seen within 5 minutes related to depletion of membrane PIP3, and a sustained late (4-24 h) effect secondary to activation of AMPK. |
format |
article |
author |
Kelly M Weixel Allison Marciszyn Rodrigo Alzamora Hui Li Oliver Fischer Robert S Edinger Kenneth R Hallows John P Johnson |
author_facet |
Kelly M Weixel Allison Marciszyn Rodrigo Alzamora Hui Li Oliver Fischer Robert S Edinger Kenneth R Hallows John P Johnson |
author_sort |
Kelly M Weixel |
title |
Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
title_short |
Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
title_full |
Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
title_fullStr |
Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
title_full_unstemmed |
Resveratrol inhibits the epithelial sodium channel via phopshoinositides and AMP-activated protein kinase in kidney collecting duct cells. |
title_sort |
resveratrol inhibits the epithelial sodium channel via phopshoinositides and amp-activated protein kinase in kidney collecting duct cells. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/aa5b842b25724128a8ddd3c7ded65dd4 |
work_keys_str_mv |
AT kellymweixel resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT allisonmarciszyn resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT rodrigoalzamora resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT huili resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT oliverfischer resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT robertsedinger resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT kennethrhallows resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells AT johnpjohnson resveratrolinhibitstheepithelialsodiumchannelviaphopshoinositidesandampactivatedproteinkinaseinkidneycollectingductcells |
_version_ |
1718421280655409152 |