Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD
Abstract To identify newborns at risk of developing ASD and to detect ASD biomarkers early after birth, we compared retrospectively ultrasound and biological measurements of babies diagnosed later with ASD or neurotypical (NT) that are collected routinely during pregnancy and birth. We used a superv...
Guardado en:
Autores principales: | Hugues Caly, Hamed Rabiei, Perrine Coste-Mazeau, Sebastien Hantz, Sophie Alain, Jean-Luc Eyraud, Thierry Chianea, Catherine Caly, David Makowski, Nouchine Hadjikhani, Eric Lemonnier, Yehezkel Ben-Ari |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa746bd949174332adf32d8f2626063e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism
por: Nouchine Hadjikhani, et al.
Publicado: (2017) -
Perception of social cues of danger in autism spectrum disorders.
por: Nicole R Zürcher, et al.
Publicado: (2013) -
Microglial ASD-related genes are involved in oligodendrocyte differentiation
por: Yuta Takanezawa, et al.
Publicado: (2021) -
ASD or PFO: State-of-the-art echocardiography says it all
por: Myo Thidar Lwin, et al.
Publicado: (2021) -
Eye Avoidance of Threatening Facial Expressions in Parents of Children with ASD
por: Yang T, et al.
Publicado: (2021)