Detection and Classification of Rice Infestation with Rice Leaf Folder (<i>Cnaphalocrocis medinalis</i>) Using Hyperspectral Imaging Techniques
The detection of rice leaf folder (RLF) infestation usually depends on manual monitoring, and early infestations cannot be detected visually. To improve detection accuracy and reduce human error, we use push-broom hyperspectral sensors to scan rice images and use machine learning and deep neural lea...
Guardado en:
Autores principales: | Gui-Chou Liang, Yen-Chieh Ouyang, Shu-Mei Dai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa837ae3918046a99e2f6059af2077d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EVALUATION OF RICE GENOTYPE AGAINST LEAF FOLDER, CASE WORM AND GRASSHOPPER DESECRATION UNDER FIELD CONDITION
por: Poonam Belbase, et al.
Publicado: (2021) -
Effect of two protein elicitors extracted from Alternaria tenuissima and Beauveria bassiana against rice leaf folder (Marasmia exigua)
por: Abdul Basit, et al.
Publicado: (2021) -
Blind Fusion of Hyperspectral Multispectral Images Based on Matrix Factorization
por: Jian Long, et al.
Publicado: (2021) -
A Band Influence Algorithm for Hyperspectral Band Selection to Classify Moldy Peanuts
por: Ziwei Liu, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)