Deep visual domain adaptation and semi-supervised segmentation for understanding wave elevation using wave flume video images
Abstract Accurate water surface elevation estimation is essential for understanding nearshore processes, but it is still challenging due to limitations in measuring water level using in-situ acoustic sensors. This paper presents a vision-based water surface elevation estimation approach using multi-...
Guardado en:
Autores principales: | Jinah Kim, Taekyung Kim, Sang-Ho Oh, Kideok Do, Joon-Gyu Ryu, Jaeil Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aa8a66427a8b4846aa6eb06241caec62 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.
por: Matthew R Whiteway, et al.
Publicado: (2021) -
Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
por: Anca Ciurte, et al.
Publicado: (2014) -
Verification of Forecast Performance of a Rapid Refresh Wave Model Based on Wind–Wave Interaction Effect
por: Min Roh, et al.
Publicado: (2021) -
An Enhanced Flume Testing Procedure for the Study of Rill Erosion
por: Vinícius Naves de Oliveira, et al.
Publicado: (2021)