Moss survival through in situ cryptobiosis after six centuries of glacier burial

Abstract Cryptobiosis is a reversible ametabolic state of life characterized by the ceasing of all metabolic processes, allowing survival of periods of intense adverse conditions. Here we show that 1) entire moss individuals, dated by 14C, survived through cryptobiosis during six centuries of cold-b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: N. Cannone, T. Corinti, F. Malfasi, P. Gerola, A. Vianelli, I. Vanetti, S. Zaccara, P. Convey, M. Guglielmin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/aa8b4b69c86c4ab391bd82576ab61050
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Cryptobiosis is a reversible ametabolic state of life characterized by the ceasing of all metabolic processes, allowing survival of periods of intense adverse conditions. Here we show that 1) entire moss individuals, dated by 14C, survived through cryptobiosis during six centuries of cold-based glacier burial in Antarctica, 2) after re-exposure due to glacier retreat, instead of dying (due to high rates of respiration supporting repair processes), at least some of these mosses were able to return to a metabolically active state and remain alive. Moss survival was assessed through growth experiments and, for the first time, through vitality measurements. Future investigations on the genetic pathways involved in cryptobiosis and the subsequent recovery mechanisms will provide key information on their applicability to other systematic groups, with implications for fields as divergent as medicine, biodiversity conservation, agriculture and space exploration.