Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
Finding a biologically-relevant inductive bias for training DNNs on large fitness landscapes is challenging. Here, the authors propose a method called Epistatic Net that improves DNN prediction accuracy and interpretation speed by integrating the knowledge that higher-order epistatic interactions ar...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/aaa0481b36da43839b3bcab8d8fbcc3a |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finding a biologically-relevant inductive bias for training DNNs on large fitness landscapes is challenging. Here, the authors propose a method called Epistatic Net that improves DNN prediction accuracy and interpretation speed by integrating the knowledge that higher-order epistatic interactions are usually sparse. |
---|