Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
Finding a biologically-relevant inductive bias for training DNNs on large fitness landscapes is challenging. Here, the authors propose a method called Epistatic Net that improves DNN prediction accuracy and interpretation speed by integrating the knowledge that higher-order epistatic interactions ar...
Enregistré dans:
Auteurs principaux: | Amirali Aghazadeh, Hunter Nisonoff, Orhan Ocal, David H. Brookes, Yijie Huang, O. Ozan Koyluoglu, Jennifer Listgarten, Kannan Ramchandran |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/aaa0481b36da43839b3bcab8d8fbcc3a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
par: Shicheng Li, et autres
Publié: (2021) -
Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
par: Jincheng Li, et autres
Publié: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
par: Lulu Wan, et autres
Publié: (2021) -
Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
par: Fan Li
Publié: (2021) -
Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
par: Shipeng Xie, et autres
Publié: (2018)