Gutter oil detection for food safety based on multi-feature machine learning and implementation on FPGA with approximate multipliers
Since consuming gutter oil does great harm to people’s health, the Food Safety Administration has always been seeking for a more effective and timely supervision. As laboratory tests consume much time, and existing field tests have excessive limitations, a more comprehensive method is in great need....
Enregistré dans:
| Auteurs principaux: | Wei Jiang, Yuhanxiao Ma, Ruiqi Chen |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
PeerJ Inc.
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/aaa6a0e47c764b6a84f3619f7c817abc |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Review on FPGA-Based Accelerators in Deep Learning
par: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publié: (2021) -
Temporal Accelerators: Unleashing the Potential of Embedded FPGAs
par: Christopher Cichiwskyj, et autres
Publié: (2021) -
Study on Willingness to Pay and Impact Mechanism of Gutter Oil Treatment: Taking Urban Residents in Sichuan Province as an Example
par: Peng Cheng, et autres
Publié: (2021) -
Approximate Inertial Manifold-Based Model Reduction and Vibration Suppression for Rigid-Flexible Mechanical Arms
par: Lisha Xu, et autres
Publié: (2021) -
FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
par: Mannhee Cho, et autres
Publié: (2021)