Gutter oil detection for food safety based on multi-feature machine learning and implementation on FPGA with approximate multipliers
Since consuming gutter oil does great harm to people’s health, the Food Safety Administration has always been seeking for a more effective and timely supervision. As laboratory tests consume much time, and existing field tests have excessive limitations, a more comprehensive method is in great need....
Guardado en:
Autores principales: | Wei Jiang, Yuhanxiao Ma, Ruiqi Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aaa6a0e47c764b6a84f3619f7c817abc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Review on FPGA-Based Accelerators in Deep Learning
por: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publicado: (2021) -
Temporal Accelerators: Unleashing the Potential of Embedded FPGAs
por: Christopher Cichiwskyj, et al.
Publicado: (2021) -
Study on Willingness to Pay and Impact Mechanism of Gutter Oil Treatment: Taking Urban Residents in Sichuan Province as an Example
por: Peng Cheng, et al.
Publicado: (2021) -
Approximate Inertial Manifold-Based Model Reduction and Vibration Suppression for Rigid-Flexible Mechanical Arms
por: Lisha Xu, et al.
Publicado: (2021) -
FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
por: Mannhee Cho, et al.
Publicado: (2021)