Optimizing machine learning models for granular NdFeB magnets by very fast simulated annealing
Abstract The macroscopic properties of permanent magnets and the resultant performance required for real implementations are determined by the magnets’ microscopic features. However, earlier micromagnetic simulations and experimental studies required relatively a lot of work to gain any complete and...
Guardado en:
Autores principales: | Hyeon-Kyu Park, Jae-Hyeok Lee, Jehyun Lee, Sang-Koog Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aabaa86861e840049fcdb68fd9c3dac5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Significance of Anisotropic Thermal Expansion in High Speed Electric Machines Employing NdFeB Permanent Magnets
por: Ram Kumar, et al.
Publicado: (2021) -
Morphology of NdFeB-Type Permanent Magnet Coercivity Enhancement by Heat Treatment Process
por: Eva Afrilinda, et al.
Publicado: (2020) -
Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process
por: Jiro Kitagawa, et al.
Publicado: (2017) -
Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil
por: Daniel Dotto München, et al.
Publicado: (2021) -
THE EFFECT OF ANNEALING ON MAGNETIC PROPERTIES OF MELT SPUN ND2FE14B INTERMETALLIC ALLOY
por: S. Sarafrazian, et al.
Publicado: (2021)