Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies
Abstract A major goal of materials research is the discovery of novel and efficient heterogeneous catalysts for various chemical processes. In such studies, the candidate catalyst material is modeled using tens to thousands of chemical species and elementary reactions. Density Functional Theory (DFT...
Guardado en:
Autores principales: | Himaghna Bhattacharjee, Nikolaos Anesiadis, Dionisios G. Vlachos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aacb8c675ade43e7b47d6c552499e479 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
por: Joshua L. Lansford, et al.
Publicado: (2020) -
The Melt Enthalpy of Pu<sub>6</sub>Fe
por: Joshua D. Coe, et al.
Publicado: (2021) -
On generalized binomial series and strongly regular graphs
por: Moço Mano,Vasco, et al.
Publicado: (2013) -
Certain Bounds of Regularity of Elimination Ideals on Operations of Graphs
por: Zongming Lv, et al.
Publicado: (2021) -
To address surface reaction network complexity using scaling relations machine learning and DFT calculations
por: Zachary W. Ulissi, et al.
Publicado: (2017)