Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies
Abstract A major goal of materials research is the discovery of novel and efficient heterogeneous catalysts for various chemical processes. In such studies, the candidate catalyst material is modeled using tens to thousands of chemical species and elementary reactions. Density Functional Theory (DFT...
Enregistré dans:
Auteurs principaux: | Himaghna Bhattacharjee, Nikolaos Anesiadis, Dionisios G. Vlachos |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/aacb8c675ade43e7b47d6c552499e479 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
par: Joshua L. Lansford, et autres
Publié: (2020) -
The Melt Enthalpy of Pu<sub>6</sub>Fe
par: Joshua D. Coe, et autres
Publié: (2021) -
On generalized binomial series and strongly regular graphs
par: Moço Mano,Vasco, et autres
Publié: (2013) -
Certain Bounds of Regularity of Elimination Ideals on Operations of Graphs
par: Zongming Lv, et autres
Publié: (2021) -
To address surface reaction network complexity using scaling relations machine learning and DFT calculations
par: Zachary W. Ulissi, et autres
Publié: (2017)