Subanesthetic ketamine rapidly alters medial prefrontal miRNAs involved in ubiquitin-mediated proteolysis.

Ketamine is a dissociative anesthetic and a non-competitive NMDAR antagonist. At subanesthetic dose, ketamine can relieve pain and work as a fast-acting antidepressant, but the underlying molecular mechanism remains elusive. This study aimed to investigate the mode of action underlying the effects o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yunjung Choi, Baeksun Kim, Suji Ham, Sooyoung Chung, Sungho Maeng, Hye-Sun Kim, Heh-In Im
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/aad8d89e18614e7ba6b6ef07dc77fd95
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ketamine is a dissociative anesthetic and a non-competitive NMDAR antagonist. At subanesthetic dose, ketamine can relieve pain and work as a fast-acting antidepressant, but the underlying molecular mechanism remains elusive. This study aimed to investigate the mode of action underlying the effects of acute subanesthetic ketamine treatment by bioinformatics analyses of miRNAs in the medial prefrontal cortex of male C57BL/6J mice. Gene Ontology and KEGG pathway analyses of the genes putatively targeted by ketamine-responsive prefrontal miRNAs revealed that acute subanesthetic ketamine modifies ubiquitin-mediated proteolysis. Validation analysis suggested that miR-148a-3p and miR-128-3p are the main players responsible for the subanesthetic ketamine-mediated alteration of ubiquitin-mediated proteolysis through varied regulation of ubiquitin ligases E2 and E3. Collectively, our data imply that the prefrontal miRNA-dependent modulation of ubiquitin-mediated proteolysis is at least partially involved in the mode of action by acute subanesthetic ketamine treatment.