The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia
Background: Motor attempt and motor imagery (MI) are two common motor tasks used in brain-computer interface (BCI). They are widely researched for motor rehabilitation in patients with hemiplegia. The differences between the motor attempt (MA) and MI tasks of patients with hemiplegia can be used to...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aaee6611745f42a6b74e17faca35dae1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:aaee6611745f42a6b74e17faca35dae1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:aaee6611745f42a6b74e17faca35dae12021-11-05T07:44:22ZThe Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia1662-521810.3389/fnbot.2021.706630https://doaj.org/article/aaee6611745f42a6b74e17faca35dae12021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnbot.2021.706630/fullhttps://doaj.org/toc/1662-5218Background: Motor attempt and motor imagery (MI) are two common motor tasks used in brain-computer interface (BCI). They are widely researched for motor rehabilitation in patients with hemiplegia. The differences between the motor attempt (MA) and MI tasks of patients with hemiplegia can be used to promote BCI application. This study aimed to explore the accuracy of BCI and event-related desynchronization (ERD) between the two tasks.Materials and Methods: We recruited 13 patients with stroke and 3 patients with traumatic brain injury, to perform MA and MI tasks in a self-control design. The BCI accuracies from the bilateral, ipsilesional, and contralesional hemispheres were analyzed and compared between different tasks. The cortical activation patterns were evaluated with ERD and laterality index (LI).Results: The study showed that the BCI accuracies of MA were significantly (p < 0.05) higher than MI in the bilateral, ipsilesional, and contralesional hemispheres in the alpha-beta (8–30 Hz) frequency bands. There was no significant difference in ERD and LI between the MA and MI tasks in the 8–30 Hz frequency bands. However, in the MA task, there was a negative correlation between the ERD values in the channel CP1 and ipsilesional hemispheric BCI accuracies (r = −0.552, p = 0.041, n = 14) and a negative correlation between the ERD values in channel CP2 and bilateral hemispheric BCI accuracies (r = −0.543, p = 0.045, n = 14). While in the MI task, there were negative correlations between the ERD values in channel C4 and bilateral hemispheric BCI accuracies (r = −0.582, p = 0.029, n = 14) as well as the contralesional hemispheric BCI accuracies (r = −0.657, p = 0.011, n = 14). As for motor dysfunction, there was a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 8–13 Hz (r = 0.565, p = 0.035, n = 14) in the MA task and a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 13–30 Hz (r = 0.558, p = 0.038, n = 14) in the MI task.Conclusion: The MA task may achieve better BCI accuracy but have similar cortical activations with the MI task. Cortical activation (ERD) may influence the BCI accuracy, which should be carefully considered in the BCI motor rehabilitation of patients with hemiplegia.Shugeng ChenXiaokang ShuHewei WangLi DingJianghong FuJie JiaJie JiaJie JiaFrontiers Media S.A.articleBCI accuraciesevent-related desynchronizationmotor attemptmotor imagerybrain-computer interfaceNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Neurorobotics, Vol 15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
BCI accuracies event-related desynchronization motor attempt motor imagery brain-computer interface Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
BCI accuracies event-related desynchronization motor attempt motor imagery brain-computer interface Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Shugeng Chen Xiaokang Shu Hewei Wang Li Ding Jianghong Fu Jie Jia Jie Jia Jie Jia The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
description |
Background: Motor attempt and motor imagery (MI) are two common motor tasks used in brain-computer interface (BCI). They are widely researched for motor rehabilitation in patients with hemiplegia. The differences between the motor attempt (MA) and MI tasks of patients with hemiplegia can be used to promote BCI application. This study aimed to explore the accuracy of BCI and event-related desynchronization (ERD) between the two tasks.Materials and Methods: We recruited 13 patients with stroke and 3 patients with traumatic brain injury, to perform MA and MI tasks in a self-control design. The BCI accuracies from the bilateral, ipsilesional, and contralesional hemispheres were analyzed and compared between different tasks. The cortical activation patterns were evaluated with ERD and laterality index (LI).Results: The study showed that the BCI accuracies of MA were significantly (p < 0.05) higher than MI in the bilateral, ipsilesional, and contralesional hemispheres in the alpha-beta (8–30 Hz) frequency bands. There was no significant difference in ERD and LI between the MA and MI tasks in the 8–30 Hz frequency bands. However, in the MA task, there was a negative correlation between the ERD values in the channel CP1 and ipsilesional hemispheric BCI accuracies (r = −0.552, p = 0.041, n = 14) and a negative correlation between the ERD values in channel CP2 and bilateral hemispheric BCI accuracies (r = −0.543, p = 0.045, n = 14). While in the MI task, there were negative correlations between the ERD values in channel C4 and bilateral hemispheric BCI accuracies (r = −0.582, p = 0.029, n = 14) as well as the contralesional hemispheric BCI accuracies (r = −0.657, p = 0.011, n = 14). As for motor dysfunction, there was a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 8–13 Hz (r = 0.565, p = 0.035, n = 14) in the MA task and a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 13–30 Hz (r = 0.558, p = 0.038, n = 14) in the MI task.Conclusion: The MA task may achieve better BCI accuracy but have similar cortical activations with the MI task. Cortical activation (ERD) may influence the BCI accuracy, which should be carefully considered in the BCI motor rehabilitation of patients with hemiplegia. |
format |
article |
author |
Shugeng Chen Xiaokang Shu Hewei Wang Li Ding Jianghong Fu Jie Jia Jie Jia Jie Jia |
author_facet |
Shugeng Chen Xiaokang Shu Hewei Wang Li Ding Jianghong Fu Jie Jia Jie Jia Jie Jia |
author_sort |
Shugeng Chen |
title |
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
title_short |
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
title_full |
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
title_fullStr |
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
title_full_unstemmed |
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia |
title_sort |
differences between motor attempt and motor imagery in brain-computer interface accuracy and event-related desynchronization of patients with hemiplegia |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/aaee6611745f42a6b74e17faca35dae1 |
work_keys_str_mv |
AT shugengchen thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT xiaokangshu thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT heweiwang thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT liding thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jianghongfu thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia thedifferencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT shugengchen differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT xiaokangshu differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT heweiwang differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT liding differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jianghongfu differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia AT jiejia differencesbetweenmotorattemptandmotorimageryinbraincomputerinterfaceaccuracyandeventrelateddesynchronizationofpatientswithhemiplegia |
_version_ |
1718444489729638400 |