Network enhancement as a general method to denoise weighted biological networks

Technical noise in experiments is unavoidable, but it introduces inaccuracies into the biological networks we infer from the data. Here, the authors introduce a diffusion-based method for denoising undirected, weighted networks, and show that it improves the performances of downstream analyses.

Guardado en:
Detalles Bibliográficos
Autores principales: Bo Wang, Armin Pourshafeie, Marinka Zitnik, Junjie Zhu, Carlos D. Bustamante, Serafim Batzoglou, Jure Leskovec
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/aaf42c026bf24c03abbdc755b39fedc1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aaf42c026bf24c03abbdc755b39fedc1
record_format dspace
spelling oai:doaj.org-article:aaf42c026bf24c03abbdc755b39fedc12021-12-02T16:50:11ZNetwork enhancement as a general method to denoise weighted biological networks10.1038/s41467-018-05469-x2041-1723https://doaj.org/article/aaf42c026bf24c03abbdc755b39fedc12018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05469-xhttps://doaj.org/toc/2041-1723Technical noise in experiments is unavoidable, but it introduces inaccuracies into the biological networks we infer from the data. Here, the authors introduce a diffusion-based method for denoising undirected, weighted networks, and show that it improves the performances of downstream analyses.Bo WangArmin PourshafeieMarinka ZitnikJunjie ZhuCarlos D. BustamanteSerafim BatzoglouJure LeskovecNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Bo Wang
Armin Pourshafeie
Marinka Zitnik
Junjie Zhu
Carlos D. Bustamante
Serafim Batzoglou
Jure Leskovec
Network enhancement as a general method to denoise weighted biological networks
description Technical noise in experiments is unavoidable, but it introduces inaccuracies into the biological networks we infer from the data. Here, the authors introduce a diffusion-based method for denoising undirected, weighted networks, and show that it improves the performances of downstream analyses.
format article
author Bo Wang
Armin Pourshafeie
Marinka Zitnik
Junjie Zhu
Carlos D. Bustamante
Serafim Batzoglou
Jure Leskovec
author_facet Bo Wang
Armin Pourshafeie
Marinka Zitnik
Junjie Zhu
Carlos D. Bustamante
Serafim Batzoglou
Jure Leskovec
author_sort Bo Wang
title Network enhancement as a general method to denoise weighted biological networks
title_short Network enhancement as a general method to denoise weighted biological networks
title_full Network enhancement as a general method to denoise weighted biological networks
title_fullStr Network enhancement as a general method to denoise weighted biological networks
title_full_unstemmed Network enhancement as a general method to denoise weighted biological networks
title_sort network enhancement as a general method to denoise weighted biological networks
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/aaf42c026bf24c03abbdc755b39fedc1
work_keys_str_mv AT bowang networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT arminpourshafeie networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT marinkazitnik networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT junjiezhu networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT carlosdbustamante networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT serafimbatzoglou networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
AT jureleskovec networkenhancementasageneralmethodtodenoiseweightedbiologicalnetworks
_version_ 1718383118601158656