Network enhancement as a general method to denoise weighted biological networks
Technical noise in experiments is unavoidable, but it introduces inaccuracies into the biological networks we infer from the data. Here, the authors introduce a diffusion-based method for denoising undirected, weighted networks, and show that it improves the performances of downstream analyses.
Guardado en:
Autores principales: | Bo Wang, Armin Pourshafeie, Marinka Zitnik, Junjie Zhu, Carlos D. Bustamante, Serafim Batzoglou, Jure Leskovec |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/aaf42c026bf24c03abbdc755b39fedc1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prioritizing network communities
por: Marinka Zitnik, et al.
Publicado: (2018) -
Identification of disease treatment mechanisms through the multiscale interactome
por: Camilo Ruiz, et al.
Publicado: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Diffusion weighted image denoising using overcomplete local PCA.
por: José V Manjón, et al.
Publicado: (2013) -
Leveraging the Cell Ontology to classify unseen cell types
por: Sheng Wang, et al.
Publicado: (2021)