A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters

Abstract A finite‐difference time‐domain method is proposed to reduce the numerical dispersion error induced by the non‐uniform meshing of multiscale configurations utilizing weighted Laguerre polynomials. The update functions of two‐dimensional TEz waves are obtained with the introduction of the ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ping Ma, Wei‐Jun Chen, Jing Tian, An‐Hua Shi, Ning Zhang
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/aaff835bbb9e44dbb3c80cea85c338a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A finite‐difference time‐domain method is proposed to reduce the numerical dispersion error induced by the non‐uniform meshing of multiscale configurations utilizing weighted Laguerre polynomials. The update functions of two‐dimensional TEz waves are obtained with the introduction of the artificial anisotropic parameters in the derivation procedure. The theoretical analysis of utilizing artificial anisotropic weighted Laguerre polynomial finite‐difference time‐domain for the suppression of numerical dispersion error is also presented. To verify the validation of the proposed method, the propagation of plane waves in a two‐dimensional cavity filled with the dielectric material is modelled. Compared with the existing approaches, the proposed method achieves low numerical dispersion error and improved accuracy without increasing computational cost.