A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters

Abstract A finite‐difference time‐domain method is proposed to reduce the numerical dispersion error induced by the non‐uniform meshing of multiscale configurations utilizing weighted Laguerre polynomials. The update functions of two‐dimensional TEz waves are obtained with the introduction of the ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ping Ma, Wei‐Jun Chen, Jing Tian, An‐Hua Shi, Ning Zhang
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/aaff835bbb9e44dbb3c80cea85c338a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:aaff835bbb9e44dbb3c80cea85c338a8
record_format dspace
spelling oai:doaj.org-article:aaff835bbb9e44dbb3c80cea85c338a82021-11-16T10:18:22ZA 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters1350-911X0013-519410.1049/ell2.12033https://doaj.org/article/aaff835bbb9e44dbb3c80cea85c338a82021-01-01T00:00:00Zhttps://doi.org/10.1049/ell2.12033https://doaj.org/toc/0013-5194https://doaj.org/toc/1350-911XAbstract A finite‐difference time‐domain method is proposed to reduce the numerical dispersion error induced by the non‐uniform meshing of multiscale configurations utilizing weighted Laguerre polynomials. The update functions of two‐dimensional TEz waves are obtained with the introduction of the artificial anisotropic parameters in the derivation procedure. The theoretical analysis of utilizing artificial anisotropic weighted Laguerre polynomial finite‐difference time‐domain for the suppression of numerical dispersion error is also presented. To verify the validation of the proposed method, the propagation of plane waves in a two‐dimensional cavity filled with the dielectric material is modelled. Compared with the existing approaches, the proposed method achieves low numerical dispersion error and improved accuracy without increasing computational cost.Ping MaWei‐Jun ChenJing TianAn‐Hua ShiNing ZhangWileyarticleElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENElectronics Letters, Vol 57, Iss 1, Pp 9-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Ping Ma
Wei‐Jun Chen
Jing Tian
An‐Hua Shi
Ning Zhang
A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
description Abstract A finite‐difference time‐domain method is proposed to reduce the numerical dispersion error induced by the non‐uniform meshing of multiscale configurations utilizing weighted Laguerre polynomials. The update functions of two‐dimensional TEz waves are obtained with the introduction of the artificial anisotropic parameters in the derivation procedure. The theoretical analysis of utilizing artificial anisotropic weighted Laguerre polynomial finite‐difference time‐domain for the suppression of numerical dispersion error is also presented. To verify the validation of the proposed method, the propagation of plane waves in a two‐dimensional cavity filled with the dielectric material is modelled. Compared with the existing approaches, the proposed method achieves low numerical dispersion error and improved accuracy without increasing computational cost.
format article
author Ping Ma
Wei‐Jun Chen
Jing Tian
An‐Hua Shi
Ning Zhang
author_facet Ping Ma
Wei‐Jun Chen
Jing Tian
An‐Hua Shi
Ning Zhang
author_sort Ping Ma
title A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
title_short A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
title_full A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
title_fullStr A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
title_full_unstemmed A 2D WLP‐FDTD method with low numerical dispersion using artificial anisotropy parameters
title_sort 2d wlp‐fdtd method with low numerical dispersion using artificial anisotropy parameters
publisher Wiley
publishDate 2021
url https://doaj.org/article/aaff835bbb9e44dbb3c80cea85c338a8
work_keys_str_mv AT pingma a2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT weijunchen a2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT jingtian a2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT anhuashi a2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT ningzhang a2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT pingma 2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT weijunchen 2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT jingtian 2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT anhuashi 2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
AT ningzhang 2dwlpfdtdmethodwithlownumericaldispersionusingartificialanisotropyparameters
_version_ 1718426566961135616