Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms

In this paper, we use an evolutionary swarm intelligence approach to build an automatic electric dispatch controller for an offshore wind power plant (WPP). The optimal power flow (OPF) problem for this WPP is solved by the Canonical Differential Evolutionary Particle Swarm Optimization algorithm (C...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carolina G. Marcelino, João V. C. Avancini, Carla A. D. M. Delgado, Elizabeth F. Wanner, Silvia Jiménez-Fernández, Sancho Salcedo-Sanz
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ab018756461540c681effa82d9046dc6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ab018756461540c681effa82d9046dc6
record_format dspace
spelling oai:doaj.org-article:ab018756461540c681effa82d9046dc62021-11-11T19:37:09ZDynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms10.3390/su1321119242071-1050https://doaj.org/article/ab018756461540c681effa82d9046dc62021-10-01T00:00:00Zhttps://www.mdpi.com/2071-1050/13/21/11924https://doaj.org/toc/2071-1050In this paper, we use an evolutionary swarm intelligence approach to build an automatic electric dispatch controller for an offshore wind power plant (WPP). The optimal power flow (OPF) problem for this WPP is solved by the Canonical Differential Evolutionary Particle Swarm Optimization algorithm (C-DEEPSO). In this paper, C-DEEPSO works as a control system for reactive sources in energy production. The control operation takes place in a daily energy dispatch, scheduled into 15 min intervals and resulting in 96 operating test scenarios. As the nature of the optimization problem is dynamic, a fine-tuning of the initialization parameters of the optimization algorithm is performed at each dispatch interval. Therefore, a version of the C-DEEPSO algorithm has been built to automatically learn the best set of initialization parameters for each scenario. For this, we have coupled C-DEEPSO with the irace tool (an extension of the iterated F-race (I/F-Race)) by using inferential statistic techniques. The experiments carried out showed that the methodology employed here is robust and able to tackle this OPF-like modeling. Moreover, the methodology works as an automatic control system for a dynamic schedule operation.Carolina G. MarcelinoJoão V. C. AvanciniCarla A. D. M. DelgadoElizabeth F. WannerSilvia Jiménez-FernándezSancho Salcedo-SanzMDPI AGarticleoffshore wind poweroptimizationenergy efficiencyenergy resourcesclean energiesEnvironmental effects of industries and plantsTD194-195Renewable energy sourcesTJ807-830Environmental sciencesGE1-350ENSustainability, Vol 13, Iss 11924, p 11924 (2021)
institution DOAJ
collection DOAJ
language EN
topic offshore wind power
optimization
energy efficiency
energy resources
clean energies
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
spellingShingle offshore wind power
optimization
energy efficiency
energy resources
clean energies
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
Carolina G. Marcelino
João V. C. Avancini
Carla A. D. M. Delgado
Elizabeth F. Wanner
Silvia Jiménez-Fernández
Sancho Salcedo-Sanz
Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
description In this paper, we use an evolutionary swarm intelligence approach to build an automatic electric dispatch controller for an offshore wind power plant (WPP). The optimal power flow (OPF) problem for this WPP is solved by the Canonical Differential Evolutionary Particle Swarm Optimization algorithm (C-DEEPSO). In this paper, C-DEEPSO works as a control system for reactive sources in energy production. The control operation takes place in a daily energy dispatch, scheduled into 15 min intervals and resulting in 96 operating test scenarios. As the nature of the optimization problem is dynamic, a fine-tuning of the initialization parameters of the optimization algorithm is performed at each dispatch interval. Therefore, a version of the C-DEEPSO algorithm has been built to automatically learn the best set of initialization parameters for each scenario. For this, we have coupled C-DEEPSO with the irace tool (an extension of the iterated F-race (I/F-Race)) by using inferential statistic techniques. The experiments carried out showed that the methodology employed here is robust and able to tackle this OPF-like modeling. Moreover, the methodology works as an automatic control system for a dynamic schedule operation.
format article
author Carolina G. Marcelino
João V. C. Avancini
Carla A. D. M. Delgado
Elizabeth F. Wanner
Silvia Jiménez-Fernández
Sancho Salcedo-Sanz
author_facet Carolina G. Marcelino
João V. C. Avancini
Carla A. D. M. Delgado
Elizabeth F. Wanner
Silvia Jiménez-Fernández
Sancho Salcedo-Sanz
author_sort Carolina G. Marcelino
title Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
title_short Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
title_full Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
title_fullStr Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
title_full_unstemmed Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms
title_sort dynamic electric dispatch for wind power plants: a new automatic controller system using evolutionary algorithms
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/ab018756461540c681effa82d9046dc6
work_keys_str_mv AT carolinagmarcelino dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
AT joaovcavancini dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
AT carlaadmdelgado dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
AT elizabethfwanner dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
AT silviajimenezfernandez dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
AT sanchosalcedosanz dynamicelectricdispatchforwindpowerplantsanewautomaticcontrollersystemusingevolutionaryalgorithms
_version_ 1718431486413111296