Enhanced methanol production by two-stage reaction of CO2 hydrogenation at atmospheric pressure
Methanol can be produced from CO2 hydrogenation. CO2 was hydrogenated to CH3OH in one-stage reaction at atmospheric pressure. The result was highly selective to CH3OH but insufficient conversion of CO2 using Cu/Zn/Al2O3. A two-stage reaction was carried out with high and low temperatures, respective...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab03302cc57a460f8af799aeee6de8b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Methanol can be produced from CO2 hydrogenation. CO2 was hydrogenated to CH3OH in one-stage reaction at atmospheric pressure. The result was highly selective to CH3OH but insufficient conversion of CO2 using Cu/Zn/Al2O3. A two-stage reaction was carried out with high and low temperatures, respectively. CO2 was hydrogenated to carbon monoxide (CO) and H2O in the first-stage at high temperatures. Subsequently, after removing H2O, CO was further hydrogenated to CH3OH in the second-stage at low temperatures. The CH3OH yield was 3.4 times higher than that of single-stage reaction. This concept achieves CO2 hydrogenation towards more CH3OH production. |
---|