Two-input protein logic gate for computation in living cells

Traditional synthetic biology tools operate by complex re-programming of DNA, requiring significant amount of ‘nucleotide-based code’ to implement instructions that are transcribed at the protein level. Here the authors demonstrate the direct regulation of cellular phenotype at the single-protein le...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yashavantha L. Vishweshwaraiah, Jiaxing Chen, Venkat R. Chirasani, Erdem D. Tabdanov, Nikolay V. Dokholyan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ab071c86d66445339a7e6c2b7d6132f6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ab071c86d66445339a7e6c2b7d6132f6
record_format dspace
spelling oai:doaj.org-article:ab071c86d66445339a7e6c2b7d6132f62021-11-21T12:34:21ZTwo-input protein logic gate for computation in living cells10.1038/s41467-021-26937-x2041-1723https://doaj.org/article/ab071c86d66445339a7e6c2b7d6132f62021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26937-xhttps://doaj.org/toc/2041-1723Traditional synthetic biology tools operate by complex re-programming of DNA, requiring significant amount of ‘nucleotide-based code’ to implement instructions that are transcribed at the protein level. Here the authors demonstrate the direct regulation of cellular phenotype at the single-protein level by creating a two-input logic gate for biological computation using ‘allosteric wiring’.Yashavantha L. VishweshwaraiahJiaxing ChenVenkat R. ChirasaniErdem D. TabdanovNikolay V. DokholyanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yashavantha L. Vishweshwaraiah
Jiaxing Chen
Venkat R. Chirasani
Erdem D. Tabdanov
Nikolay V. Dokholyan
Two-input protein logic gate for computation in living cells
description Traditional synthetic biology tools operate by complex re-programming of DNA, requiring significant amount of ‘nucleotide-based code’ to implement instructions that are transcribed at the protein level. Here the authors demonstrate the direct regulation of cellular phenotype at the single-protein level by creating a two-input logic gate for biological computation using ‘allosteric wiring’.
format article
author Yashavantha L. Vishweshwaraiah
Jiaxing Chen
Venkat R. Chirasani
Erdem D. Tabdanov
Nikolay V. Dokholyan
author_facet Yashavantha L. Vishweshwaraiah
Jiaxing Chen
Venkat R. Chirasani
Erdem D. Tabdanov
Nikolay V. Dokholyan
author_sort Yashavantha L. Vishweshwaraiah
title Two-input protein logic gate for computation in living cells
title_short Two-input protein logic gate for computation in living cells
title_full Two-input protein logic gate for computation in living cells
title_fullStr Two-input protein logic gate for computation in living cells
title_full_unstemmed Two-input protein logic gate for computation in living cells
title_sort two-input protein logic gate for computation in living cells
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ab071c86d66445339a7e6c2b7d6132f6
work_keys_str_mv AT yashavanthalvishweshwaraiah twoinputproteinlogicgateforcomputationinlivingcells
AT jiaxingchen twoinputproteinlogicgateforcomputationinlivingcells
AT venkatrchirasani twoinputproteinlogicgateforcomputationinlivingcells
AT erdemdtabdanov twoinputproteinlogicgateforcomputationinlivingcells
AT nikolayvdokholyan twoinputproteinlogicgateforcomputationinlivingcells
_version_ 1718418906686685184