Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism
Graphene has shown incredible promise as ideal material for numerous fields; however its use in spintronics has been hampered by the lack of intrinsic magnetism. Here, Hu et al succeed in embedding Cobalt in the graphene lattice, creating robust room-temperature ferromagnetism.
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/ab0e2239a3d14fcf9b0a3217c5e111ec |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene has shown incredible promise as ideal material for numerous fields; however its use in spintronics has been hampered by the lack of intrinsic magnetism. Here, Hu et al succeed in embedding Cobalt in the graphene lattice, creating robust room-temperature ferromagnetism. |
---|