Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe
A robust early warning system can alert to the presence of food crises and related drivers, informing decision makers on food security. To date, decision-makers in Zimbabwe still rely on agriculture extension personnel to generate information on wheat production and monitor the crop. Such traditiona...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab179401aace4328bf87a6bba73c432a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ab179401aace4328bf87a6bba73c432a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ab179401aace4328bf87a6bba73c432a2021-11-12T11:19:45ZMapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe2624-955310.3389/fclim.2021.715837https://doaj.org/article/ab179401aace4328bf87a6bba73c432a2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fclim.2021.715837/fullhttps://doaj.org/toc/2624-9553A robust early warning system can alert to the presence of food crises and related drivers, informing decision makers on food security. To date, decision-makers in Zimbabwe still rely on agriculture extension personnel to generate information on wheat production and monitor the crop. Such traditional methods are subjective, costly and their accuracy depends on the experience of the assessor. This study investigates Sentinel-2 NDVI and time series utility as a wheat-monitoring tool over the wheat-growing areas of Zimbabwe's Bindura, Shamva, and Guruve districts. NDVI was used to classify and map the wheat fields. The classification model's evaluation was done by creating 100 reference pixels across the classified map and constructing a confusion matrix with a resultant kappa coefficient of 0.89. A sensitivity test, receiver operating characteristic (ROC) and area under the curve (AUC) were used to measure the model's efficiency. Fifty GPS points randomly collected from wheat fields in the selected districts were used to identify and compute the area of the fields. The correlation between the area declared by farmers and the calculated area was positive, with an R2 value of 0.98 and a Root Mean Square Error (RMSE) of 2.23 hectares. The study concluded that NDVI is a good index for estimating the area under wheat. In this regard, NDVI can be used for early warning and early action, especially in monitoring programs like ‘Command Agriculture’ in Zimbabwe. In current and future studies, the use of high-resolution images from remote sensing is essential. Furthermore, ground truthing is always important to validate results from remote sensing at any spatial scale.Fadzisayi MashonganyikaHillary MugiyoHillary MugiyoEzekia SvotwaDumisani KutywayoFrontiers Media S.A.articlefood securitygrain yieldGISremote sensingZimbabweEnvironmental sciencesGE1-350ENFrontiers in Climate, Vol 3 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
food security grain yield GIS remote sensing Zimbabwe Environmental sciences GE1-350 |
spellingShingle |
food security grain yield GIS remote sensing Zimbabwe Environmental sciences GE1-350 Fadzisayi Mashonganyika Hillary Mugiyo Hillary Mugiyo Ezekia Svotwa Dumisani Kutywayo Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
description |
A robust early warning system can alert to the presence of food crises and related drivers, informing decision makers on food security. To date, decision-makers in Zimbabwe still rely on agriculture extension personnel to generate information on wheat production and monitor the crop. Such traditional methods are subjective, costly and their accuracy depends on the experience of the assessor. This study investigates Sentinel-2 NDVI and time series utility as a wheat-monitoring tool over the wheat-growing areas of Zimbabwe's Bindura, Shamva, and Guruve districts. NDVI was used to classify and map the wheat fields. The classification model's evaluation was done by creating 100 reference pixels across the classified map and constructing a confusion matrix with a resultant kappa coefficient of 0.89. A sensitivity test, receiver operating characteristic (ROC) and area under the curve (AUC) were used to measure the model's efficiency. Fifty GPS points randomly collected from wheat fields in the selected districts were used to identify and compute the area of the fields. The correlation between the area declared by farmers and the calculated area was positive, with an R2 value of 0.98 and a Root Mean Square Error (RMSE) of 2.23 hectares. The study concluded that NDVI is a good index for estimating the area under wheat. In this regard, NDVI can be used for early warning and early action, especially in monitoring programs like ‘Command Agriculture’ in Zimbabwe. In current and future studies, the use of high-resolution images from remote sensing is essential. Furthermore, ground truthing is always important to validate results from remote sensing at any spatial scale. |
format |
article |
author |
Fadzisayi Mashonganyika Hillary Mugiyo Hillary Mugiyo Ezekia Svotwa Dumisani Kutywayo |
author_facet |
Fadzisayi Mashonganyika Hillary Mugiyo Hillary Mugiyo Ezekia Svotwa Dumisani Kutywayo |
author_sort |
Fadzisayi Mashonganyika |
title |
Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
title_short |
Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
title_full |
Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
title_fullStr |
Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
title_full_unstemmed |
Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe |
title_sort |
mapping of winter wheat using sentinel-2 ndvi data. a case of mashonaland central province in zimbabwe |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/ab179401aace4328bf87a6bba73c432a |
work_keys_str_mv |
AT fadzisayimashonganyika mappingofwinterwheatusingsentinel2ndvidataacaseofmashonalandcentralprovinceinzimbabwe AT hillarymugiyo mappingofwinterwheatusingsentinel2ndvidataacaseofmashonalandcentralprovinceinzimbabwe AT hillarymugiyo mappingofwinterwheatusingsentinel2ndvidataacaseofmashonalandcentralprovinceinzimbabwe AT ezekiasvotwa mappingofwinterwheatusingsentinel2ndvidataacaseofmashonalandcentralprovinceinzimbabwe AT dumisanikutywayo mappingofwinterwheatusingsentinel2ndvidataacaseofmashonalandcentralprovinceinzimbabwe |
_version_ |
1718430638482128896 |