Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning

Determining the source of nanoparticles is critical for nanotechnology risk assessment. Here, the authors develop an approach that, by taking into account the isotopic signatures of both Si and O, may be able to distinguish between natural and engineered SiO2 nanoparticles, and even those synthesize...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xuezhi Yang, Xian Liu, Aiqian Zhang, Dawei Lu, Gang Li, Qinghua Zhang, Qian Liu, Guibin Jiang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ab1fa37fd61b4fb1bc2805de4387921d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ab1fa37fd61b4fb1bc2805de4387921d
record_format dspace
spelling oai:doaj.org-article:ab1fa37fd61b4fb1bc2805de4387921d2021-12-02T17:01:34ZDistinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning10.1038/s41467-019-09629-52041-1723https://doaj.org/article/ab1fa37fd61b4fb1bc2805de4387921d2019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09629-5https://doaj.org/toc/2041-1723Determining the source of nanoparticles is critical for nanotechnology risk assessment. Here, the authors develop an approach that, by taking into account the isotopic signatures of both Si and O, may be able to distinguish between natural and engineered SiO2 nanoparticles, and even those synthesized by different manufacturers.Xuezhi YangXian LiuAiqian ZhangDawei LuGang LiQinghua ZhangQian LiuGuibin JiangNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xuezhi Yang
Xian Liu
Aiqian Zhang
Dawei Lu
Gang Li
Qinghua Zhang
Qian Liu
Guibin Jiang
Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
description Determining the source of nanoparticles is critical for nanotechnology risk assessment. Here, the authors develop an approach that, by taking into account the isotopic signatures of both Si and O, may be able to distinguish between natural and engineered SiO2 nanoparticles, and even those synthesized by different manufacturers.
format article
author Xuezhi Yang
Xian Liu
Aiqian Zhang
Dawei Lu
Gang Li
Qinghua Zhang
Qian Liu
Guibin Jiang
author_facet Xuezhi Yang
Xian Liu
Aiqian Zhang
Dawei Lu
Gang Li
Qinghua Zhang
Qian Liu
Guibin Jiang
author_sort Xuezhi Yang
title Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
title_short Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
title_full Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
title_fullStr Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
title_full_unstemmed Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
title_sort distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ab1fa37fd61b4fb1bc2805de4387921d
work_keys_str_mv AT xuezhiyang distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT xianliu distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT aiqianzhang distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT daweilu distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT gangli distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT qinghuazhang distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT qianliu distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
AT guibinjiang distinguishingthesourcesofsilicananoparticlesbydualisotopicfingerprintingandmachinelearning
_version_ 1718382103652990976