Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium‐ion battery in a wide temperature range
Abstract Replacement of flammable liquid electrolytes with gel polymer electrolytes (GPEs) is a promising route to improve the safety of lithium‐ion batteries (LIBs). However, polymer‐based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high t...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab22fc0961b146f796842cd85488faf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Replacement of flammable liquid electrolytes with gel polymer electrolytes (GPEs) is a promising route to improve the safety of lithium‐ion batteries (LIBs). However, polymer‐based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures. Herein, an integrated design of electrodes/fibrous GPEs modified with graphene oxide (GO) is reported. Due to the integrated structure of electrodes/GPEs, the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures (160–180°C), thus preventing a short circuit of electrodes. Moreover, after GO modification, oxygen‐containing functional groups of GO can accelerate Li+ transport of GO‐GPEs even at a low temperature of −15°C. When these GPEs are applied to flexible LIBs, the LIBs show excellent electrochemical performance, with satisfactory cycling stability of 82.9% at 1 C after 1000 cycles at 25°C. More importantly, at a high temperature of 160°C, the LIBs can also discharge normally and light the green light‐emitting diode. Furthermore, at a low temperature of −15°C, 92.7% of its room‐temperature capacity can be obtained due to the accelerated Li+ transport caused by GO modification, demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications. |
---|