Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet
Abstract Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab2478e8779d4dac8b2f08fe91e92ddd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ab2478e8779d4dac8b2f08fe91e92ddd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ab2478e8779d4dac8b2f08fe91e92ddd2021-12-02T15:13:02ZSpooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet10.1038/s41534-020-00327-52056-6387https://doaj.org/article/ab2478e8779d4dac8b2f08fe91e92ddd2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41534-020-00327-5https://doaj.org/toc/2056-6387Abstract Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.Sumeet KhatriAnthony J. BradyRenée A. DesporteManon P. BartJonathan P. DowlingNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 Sumeet Khatri Anthony J. Brady Renée A. Desporte Manon P. Bart Jonathan P. Dowling Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
description |
Abstract Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality. |
format |
article |
author |
Sumeet Khatri Anthony J. Brady Renée A. Desporte Manon P. Bart Jonathan P. Dowling |
author_facet |
Sumeet Khatri Anthony J. Brady Renée A. Desporte Manon P. Bart Jonathan P. Dowling |
author_sort |
Sumeet Khatri |
title |
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
title_short |
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
title_full |
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
title_fullStr |
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
title_full_unstemmed |
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
title_sort |
spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ab2478e8779d4dac8b2f08fe91e92ddd |
work_keys_str_mv |
AT sumeetkhatri spookyactionataglobaldistanceanalysisofspacebasedentanglementdistributionforthequantuminternet AT anthonyjbrady spookyactionataglobaldistanceanalysisofspacebasedentanglementdistributionforthequantuminternet AT reneeadesporte spookyactionataglobaldistanceanalysisofspacebasedentanglementdistributionforthequantuminternet AT manonpbart spookyactionataglobaldistanceanalysisofspacebasedentanglementdistributionforthequantuminternet AT jonathanpdowling spookyactionataglobaldistanceanalysisofspacebasedentanglementdistributionforthequantuminternet |
_version_ |
1718387591756120064 |