Biomass Estimation, Nutrient Content, and Decomposition Rate of Shoot Sheath in Moso Bamboo Forest of Yixing Forest Farm, China
The biomass, nutrient content and decomposition rate of shoot sheaths remain unexplored in the study of Moso bamboo forests. The rapid growth of shoots means many bamboo sheaths are produced each year, and therefore should not be neglected in the study of the Moso bamboo ecosystem. In our study, we...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab27447b448042108921e91053e563f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The biomass, nutrient content and decomposition rate of shoot sheaths remain unexplored in the study of Moso bamboo forests. The rapid growth of shoots means many bamboo sheaths are produced each year, and therefore should not be neglected in the study of the Moso bamboo ecosystem. In our study, we selected 160 bamboo shoots of different sizes in Yixing forest farm, Jiangsu Province. Our analysis was based on the allometric growth equation, using diameter at breast height (DBH), internode length of bamboo at breast height (IL), and bamboo height (H) as independent variables to establish the biomass model of shoot sheaths using all samples. In addition, we also measured the nutrient content of shoots and estimated the decomposition rate of shoots by setting up litter decomposition bags. Our results found that logarithmic regression should be used to fit the biomass model of shoot sheaths. From the perspective of practical application, model W3 fitting DBH and IL was determined. The order of the nutrient elements in the shoot sheath is C > N > K > P. Decomposition tests showed that it took 0.47 years for 50% of sheaths to decompose, and 3.15 years for all sheaths to decompose. |
---|