Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors

Transcriptional factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of genes in a complex and redundant regulatory network. Here, the authors construct the transcription regulatory network in maize leaf using 104 TFs ChIP-seq data and train machine learning models to predi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaoyu Tu, María Katherine Mejía-Guerra, Jose A. Valdes Franco, David Tzeng, Po-Yu Chu, Wei Shen, Yingying Wei, Xiuru Dai, Pinghua Li, Edward S. Buckler, Silin Zhong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/ab27a8e4e9b64591b6b5f6f82b51efc6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ab27a8e4e9b64591b6b5f6f82b51efc6
record_format dspace
spelling oai:doaj.org-article:ab27a8e4e9b64591b6b5f6f82b51efc62021-12-02T19:16:24ZReconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors10.1038/s41467-020-18832-82041-1723https://doaj.org/article/ab27a8e4e9b64591b6b5f6f82b51efc62020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18832-8https://doaj.org/toc/2041-1723Transcriptional factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of genes in a complex and redundant regulatory network. Here, the authors construct the transcription regulatory network in maize leaf using 104 TFs ChIP-seq data and train machine learning models to predict TF binding and colocalization.Xiaoyu TuMaría Katherine Mejía-GuerraJose A. Valdes FrancoDavid TzengPo-Yu ChuWei ShenYingying WeiXiuru DaiPinghua LiEdward S. BucklerSilin ZhongNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiaoyu Tu
María Katherine Mejía-Guerra
Jose A. Valdes Franco
David Tzeng
Po-Yu Chu
Wei Shen
Yingying Wei
Xiuru Dai
Pinghua Li
Edward S. Buckler
Silin Zhong
Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
description Transcriptional factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of genes in a complex and redundant regulatory network. Here, the authors construct the transcription regulatory network in maize leaf using 104 TFs ChIP-seq data and train machine learning models to predict TF binding and colocalization.
format article
author Xiaoyu Tu
María Katherine Mejía-Guerra
Jose A. Valdes Franco
David Tzeng
Po-Yu Chu
Wei Shen
Yingying Wei
Xiuru Dai
Pinghua Li
Edward S. Buckler
Silin Zhong
author_facet Xiaoyu Tu
María Katherine Mejía-Guerra
Jose A. Valdes Franco
David Tzeng
Po-Yu Chu
Wei Shen
Yingying Wei
Xiuru Dai
Pinghua Li
Edward S. Buckler
Silin Zhong
author_sort Xiaoyu Tu
title Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
title_short Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
title_full Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
title_fullStr Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
title_full_unstemmed Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
title_sort reconstructing the maize leaf regulatory network using chip-seq data of 104 transcription factors
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/ab27a8e4e9b64591b6b5f6f82b51efc6
work_keys_str_mv AT xiaoyutu reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT mariakatherinemejiaguerra reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT joseavaldesfranco reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT davidtzeng reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT poyuchu reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT weishen reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT yingyingwei reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT xiurudai reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT pinghuali reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT edwardsbuckler reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
AT silinzhong reconstructingthemaizeleafregulatorynetworkusingchipseqdataof104transcriptionfactors
_version_ 1718376930231713792