Reduced misclosure of global sea-level budget with updated Tongji-Grace2018 solution

Abstract The global sea-level budget is studied using the Gravity Recovery and Climate Experiment (GRACE) solutions, Satellite Altimetry and Argo observations based on the updated budget equation. When the global ocean mass change is estimated with the updated Tongji-Grace2018 solution, the misclosu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fengwei Wang, Yunzhong Shen, Qiujie Chen, Yu Sun
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ab37d4ccf47a407aa4baa98abbbbf27e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The global sea-level budget is studied using the Gravity Recovery and Climate Experiment (GRACE) solutions, Satellite Altimetry and Argo observations based on the updated budget equation. When the global ocean mass change is estimated with the updated Tongji-Grace2018 solution, the misclosure of the global sea-level budget can be reduced by 0.11–0.22 mm/year compared to four other recent solutions (i.e. CSR RL06, GFZ RL06, JPL RL06 and ITSG-Grace2018) over the period January 2005 to December 2016. When the same missing months as the GRACE solution are deleted from altimetry and Argo data, the misclosure will be reduced by 0.06 mm/year. Once retained the GRACE C20 term, the linear trends of Tongji-Grace2018 and ITSG-Grace2018 solutions are 2.60 ± 0.16 and 2.54 ± 0.16 mm/year, closer to 2.60 ± 0.14 mm/year from Altimetry–Argo than the three RL06 official solutions. Therefore, the Tongji-Grace2018 solution can reduce the misclosure between altimetry, Argo and GRACE data, regardless of whether the C20 term is replaced or not, since the low-degree spherical harmonic coefficients of the Tongji-Grace2018 solution can capture more ocean signals, which are confirmed by the statistical results of the time series of global mean ocean mass change derived from five GRACE solutions with the spherical harmonic coefficients truncated to different degrees and orders.