Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
Abstract Restricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a variety of unsupervised machine learning applications such as image recognition, drug discovery, and materials design. The Boltzmann probability distribution is used as a model to identify network p...
Guardado en:
Autores principales: | Guanglei Xu, William S. Oates |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab490becf52a484583c18e292dabe3d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations
por: Chang Yu Hsieh, et al.
Publicado: (2021) -
Mode-assisted joint training of deep Boltzmann machines
por: Haik Manukian, et al.
Publicado: (2021) -
Modeling a population of retinal ganglion cells with restricted Boltzmann machines
por: Riccardo Volpi, et al.
Publicado: (2020) -
A Novel Restricted Boltzmann Machine Training Algorithm With Dynamic Tempering Chains
por: Xinyu Li, et al.
Publicado: (2021) -
Inverse problems for structured datasets using parallel TAP equations and restricted Boltzmann machines
por: Aurelien Decelle, et al.
Publicado: (2021)