Gene regulatory network inference from sparsely sampled noisy data
Gene regulatory network inference is a topical problem in systems biology. Here, the authors presents BINGO, a powerful method for network inference from time series data.
Guardado en:
Autores principales: | Atte Aalto, Lauri Viitasaari, Pauliina Ilmonen, Laurent Mombaerts, Jorge Gonçalves |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab5b9696e0eb4f948944482518584fb9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling temporally uncorrelated components of complex-valued stationary processes
por: Niko Lietzén, et al.
Publicado: (2021) -
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
por: Deepika Vatsa, et al.
Publicado: (2021) -
Inference of causal networks from time-varying transcriptome data via sparse coding.
por: Kai Zhang, et al.
Publicado: (2012) -
KBoost: a new method to infer gene regulatory networks from gene expression data
por: Luis F. Iglesias-Martinez, et al.
Publicado: (2021) -
Machine Learning Link Inference of Noisy Delay-Coupled Networks with Optoelectronic Experimental Tests
por: Amitava Banerjee, et al.
Publicado: (2021)