The Circadian Clock Gene, Bmal1, Regulates Intestinal Stem Cell Signaling and Represses Tumor Initiation

Background & Aims: Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kyle Stokes, Malika Nunes, Chantelle Trombley, Danilo E.F. L. Flôres, Gang Wu, Zainab Taleb, Abedalrhman Alkhateeb, Suhrid Banskota, Chris Harris, Oliver P. Love, Waliul I. Khan, Luis Rueda, John B. Hogenesch, Phillip Karpowicz
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/ab5c749e56d34683944b22691e2cbd1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background & Aims: Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known. We tested the nonredundant clock gene Bmal1 in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer. Methods: Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod (day/night cycle) disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal nontransformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal. Results: Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors show high Yes-associated protein 1 (Hippo signaling) activity but show low Wnt (Wingless and Int-1) activity. Intestinal organoid assays show that loss of Bmal1 increases self-renewal in a Yes-associated protein 1–dependent manner. Conclusions: Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation. Transcript profiling: GEO accession number: GSE157357.