Quantum compiling by deep reinforcement learning
Quantum compilers are characterized by a trade-off between the length of the sequences, the precompilation time, and the execution time. Here, the authors propose an approach based on deep reinforcement learning to approximate unitary operators as circuits, and show that this approach decreases the...
Guardado en:
Autores principales: | Lorenzo Moro, Matteo G. A. Paris, Marcello Restelli, Enrico Prati |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab73e5736a1642b98d3c091262945c6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ultra-deep optical cooling of coupled nuclear spin-spin and quadrupole reservoirs in a GaAs/(Al,Ga)As quantum well
por: Mladen Kotur, et al.
Publicado: (2021) -
Realising and compressing quantum circuits with quantum reservoir computing
por: Sanjib Ghosh, et al.
Publicado: (2021) -
Quantum critical dynamics in a spinor Hubbard model quantum simulator
por: Jared O. Austin, et al.
Publicado: (2021) -
Quantum dissipative adaptation
por: Daniel Valente, et al.
Publicado: (2021) -
Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
por: Shruti Dogra, et al.
Publicado: (2021)