Using manifold learning for atlas selection in multi-atlas segmentation.
Multi-atlas segmentation has been widely used to segment various anatomical structures. The success of this technique partly relies on the selection of atlases that are best mapped to a new target image after registration. Recently, manifold learning has been proposed as a method for atlas selection...
Guardado en:
Autores principales: | Albert K Hoang Duc, Marc Modat, Kelvin K Leung, M Jorge Cardoso, Josephine Barnes, Timor Kadir, Sébastien Ourselin, Alzheimer’s Disease Neuroimaging Initiative |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ab9490bb40ea451eba6a2f67dc11cada |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of Disease-Related Genes That Are Common between Alzheimer’s and Cardiovascular Disease Using Blood Genome-Wide Transcriptome Analysis
por: Taesic Lee, et al.
Publicado: (2021) -
Correlation between Alzheimer’s disease and type 2 diabetes using non-negative matrix factorization
por: Yeonwoo Chung, et al.
Publicado: (2021) -
Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model.
por: Xiaoying Tang, et al.
Publicado: (2013) -
Cascaded Multi-view Canonical Correlation (CaMCCo) for Early Diagnosis of Alzheimer’s Disease via Fusion of Clinical, Imaging and Omic Features
por: Asha Singanamalli, et al.
Publicado: (2017) - Organ Atlas